Overview

C++ is undoubtedly one of the most popular programming languages for software development. It brings language enhancements and object-oriented programming support to the extremely popular language C . However, C ++ is a large and sometimes difficult language, and even with a C or object oriented background, a programmer needs to understand C ++ programming style as well as C ++ constructs to get the best out of it.

The course is written from a developers rather than an academics perspective, providing a thorough practical coverage of the language. It aims to eliminate common misconceptions and poor programming practice by teaching the features of the language and standard library that enforce good practice.

In particular the course teaches the Modern C++ approach, to deliver clear expressive and efficient code. Although C++11 and more recent additions to the language are taught throughout (including C++ 14 and 17), most of the material is useful and relevant to pre C++11 users.

This is a hands-on course with a mix of tuition and practical sessions for each technical chapter which reinforce the Modern Expressive C ++ programming techniques covered in the course. Delegates will write unit tests to verify their work as they develop a GUI based tool to support their learning.

Read more +

Prerequisites

Delegates must have solid experience of programming, with a clear understanding of variable definitions, references, implementing and calling functions and multiple source file projects. A basic understanding of Object Oriented principles is assumed. Those coming from C, C# or Java will have an advantage.

Delegates who do not meet these prerequisites are unlikely to be able to keep pace and should consider attending the Programming Foundations course first.

Experienced C++ programmers should also consider the QA course Modern Robust C++ Development.

Delegates will require a Microsoft account (signing up one is free). The instructions on how to set up a Microsoft account can be found here.

Read more +

Delegates will learn how to

Delegates will learn how to:

  • Define and use data types.
  • Declare, define and call functions.
  • Use pointers, smart pointers, dynamic memory and object lifetime.
  • Understand the importance and application of const consistency.
  • Understand the key concepts and vocabulary of object orientation.
  • Implement classes.
  • Provide inward and outward conversions to UDT's.
  • Build new classes from other classes using composition and aggregation.
  • Build new classes from other classes using inheritance.
  • Design and write code with polymorphic behaviour.
  • Use container classes and templates.
  • Make extensive use of algorithms.
  • Write code that is efficient and robust
Read more +

Outline

Chapter 1 – Introduction

  • Style and Approach

Chapter 2 – Language Overview

  • Why use C++?
  • Language Distinctives
  • Classic v Modern C++
  • File Structure
  • Online Compilers
  • Hello World
  • Identifiers
  • Keywords
  • Declarations
  • Definitions
  • Expressions and Statements
  • Member Access
  • Operators
  • Layout

Chapter 3 –Variables and Functions

  • Mutable and Immutable Variable types
  • Auto Variables
  • Brace or List Initialization, Uniform Initialization
  • Scope Types
  • Lifetime
  • Namespaces
  • Name Hiding
  • Scope Resolution
  • Function Prototype
  • Parameter Types
  • Reference
  • Function Return Types
  • Trailing Return
  • Header Files
  • Function Parameter Defaults
  • Function implementation
  • Inline function
  • Source-code Implementation
  • Deduced Return Type
  • Anonymous Return
  • Un-named arguments

Chapter 4 – Collections

  • Arrays
  • Array Initialisation
  • Array Behaviour
  • Arrays as Arguments
  • std::array
  • Vector Basics
  • Enumeration – Range For-loop
  • File System Basics
  • File-Streaming

Chapter 5 – Types and Const Qualifiers

  • Primitive Types
  • Uninitialised Values
  • Type Aliases
  • This-pointer
  • Const Objects
  • Const Function Parameters
  • Queries and Modifiers
  • Free Functions

Chapter 6 – Foundational Design Principles

  • Encapsulation
  • Private Access
  • Things that Break Encapsulation
  • Single Responsibility Principle
  • Expressiveness
  • Expressive Names
  • Resource Acquisition Is Initialization – RAII

Chapter 7 – Literals and Strings

  • Literals and Magic-Numbers
  • Numeric Limits
  • Strings
  • Tokenization
  • stringstream
  • Formatting Streams

Chapter 8 – Flow Control

  • Boolean
  • Conditions & Boolean Operators
  • If - Else
  • Range-For
  • Counted For-Loop
  • While-loop
  • Enum
  • Switch
  • Cost of testing and branching

Chapter 9 – Header Files

  • One Definition Rule
  • #define
  • constexpr literals
  • Precompiled Header Files

Chapter 10 – Unit Testing

  • What should be tested?
  • Project Arrangement
  • Unit Tests
  • Compiling Source Code to Use Libraries

Chapter 11 – Iterators

  • Operators
  • Prefix / Postfix Increment / Decrement
  • Iterators
  • Member Access Operators
  • Moving Iterators
  • Query Iterators
  • Iterator Position

Chapter 12 – Pointers

  • Naked Reference
  • Problems with Null-Pointers
  • Query Pointers
  • Array Pointers
  • Aggregate Pointers
  • Function Pointers
  • void, void pointers
  • Pointers as Iterators

Chapter 13 – Zero-Cost Abstractions

  • Encapsulating Concepts
  • Enumerated Type, enum
  • Bitwise (Flag) Enums

Chapter 14 – Lambdas

  • How Expressiveness Breaks Encapsulation
  • Locally defined function
  • Lambda Syntax
  • Capture List
  • Argument List
  • Return Type
  • Lambda Body
  • Lambda Closure as Function Pointer
  • Inlined Lambda
  • Immediately Invoked Lambda
  • Lambdas in Header Files

Chapter 15 – Algorithms

  • Non-Range Algorithms
  • Range Algorithms
  • Algorithm Examples
  • back_inserter
  • Loops and Folds
  • Accumulating Strings

Chapter 16 – Inline and Extern

  • Symbol Tables
  • Header Files Defining Objects or Functions
  • Inlining
  • Extern

Chapter 17 – Container Types

  • Compile-time sized containers
  • Dynamically sized Sequential Containers
  • Dynamically Sized Associative Containers

Chapter 18 – Type Conversions

  • Implicit Type Conversions
  • Keyword Casts
  • Conversion Constructor – Inward Conversion
  • Class Operators
  • Conversion Assignment
  • Conversion Operator - Outward Conversion
  • Allowable Conversions

Chapter 19 – Function Overloading

  • Function Overloading
  • Overloading on Const
  • Function Delegation
  • Inlined Function Definitions
  • Template Functions
  • Template Classes

Chapter 20 – Classes

  • Programming Paradigms
  • Object Oriented Programming (OOP)
  • Class Definition
  • Public Interface
  • Class Header File
  • Construction
  • In-Class Defaults
  • Default Constructor
  • Destruction
  • Synthesised Functions
  • Member Function Implementation
  • Member Initializer List (MIL)
  • std::initializer_list Constructor
  • Static Storage
  • Class Static Data
  • Class Static Functions
  • Struct

Chapter 21 – Inheritance

  • Inheritance Hierarchy
  • Liskov substitution
  • Public Inheritance
  • Function Specialisation
  • Protected Access
  • Private Inheritance
  • Accessing Base Class Members
  • Multiple Inheritance
  • Base Class Construction
  • Constructor Delegation
  • Generalisation
  • Abstract Classes

Chapter 22 – Polymorphism

  • Virtual Functions
  • Override
  • Virtual Destructor
  • Pure Functions
  • Pure Abstract Class (Interface Class)
  • Null-Objects

Chapter 23 – Association

  • Association
  • Composition
  • Inheritance
  • Aggregation
  • Object Creation for Aggregation
  • new and delete
  • Array New & Delete
  • New and Delete Problems
  • Expressive Lifetime Management
  • unique_ptr
  • shared_ptr
  • Safe Aggregation
  • Multiple Association
  • Friendship
Read more +

Why choose QA

Need to know

Frequently asked questions

How can I create an account on myQA.com?

There are a number of ways to create an account. If you are a self-funder, simply select the "Create account" option on the login page.

If you have been booked onto a course by your company, you will receive a confirmation email. From this email, select "Sign into myQA" and you will be taken to the "Create account" page. Complete all of the details and select "Create account".

If you have the booking number you can also go here and select the "I have a booking number" option. Enter the booking reference and your surname. If the details match, you will be taken to the "Create account" page from where you can enter your details and confirm your account.

Find more answers to frequently asked questions in our FAQs: Bookings & Cancellations page.

How do QA’s virtual classroom courses work?

Our virtual classroom courses allow you to access award-winning classroom training, without leaving your home or office. Our learning professionals are specially trained on how to interact with remote attendees and our remote labs ensure all participants can take part in hands-on exercises wherever they are.

We use the WebEx video conferencing platform by Cisco. Before you book, check that you meet the WebEx system requirements and run a test meeting to ensure the software is compatible with your firewall settings. If it doesn’t work, try adjusting your settings or contact your IT department about permitting the website.

How do QA’s online courses work?

QA online courses, also commonly known as distance learning courses or elearning courses, take the form of interactive software designed for individual learning, but you will also have access to full support from our subject-matter experts for the duration of your course. When you book a QA online learning course you will receive immediate access to it through our e-learning platform and you can start to learn straight away, from any compatible device. Access to the online learning platform is valid for one year from the booking date.

All courses are built around case studies and presented in an engaging format, which includes storytelling elements, video, audio and humour. Every case study is supported by sample documents and a collection of Knowledge Nuggets that provide more in-depth detail on the wider processes.

When will I receive my joining instructions?

Joining instructions for QA courses are sent two weeks prior to the course start date, or immediately if the booking is confirmed within this timeframe. For course bookings made via QA but delivered by a third-party supplier, joining instructions are sent to attendees prior to the training course, but timescales vary depending on each supplier’s terms. Read more FAQs.

When will I receive my certificate?

Certificates of Achievement are issued at the end the course, either as a hard copy or via email. Read more here.

Let's talk

By submitting this form, you agree to QA processing your data in accordance with our Privacy Policy and Terms & Conditions. You can unsubscribe at any time by clicking the link in our emails or contacting us directly.