Overview
The Designing Cisco Data Center Infrastructure (DCID) v7.0 course helps you master design and deployment options focused on Cisco® data center solutions and technologies across network, compute, virtualization, storage area networks, automation, and security. You will learn design practices for the
Cisco Unified Computing System™ (Cisco UCS®) solution based on Cisco UCS B-Series and C-Series servers, Cisco UCS Manager, and Cisco Unified Fabric. You will also gain design experience with network management technologies including Cisco UCS Manager, Cisco Data Center Network Manager (DCNM), and Cisco UCS Director. You can expect theoretical content as well as design-oriented case studies in the form of activities.
This course helps you prepare to take the exam, Designing Cisco Data Center Infrastructure (300-610 DCID), which leads to the new CCNP® Data Center and Cisco Certified Specialist - Data Center Design certifications. The exam will be available beginning February 24, 2020.
Who should attend
- Network Designer
- Network Administrator
- Network Engineer
- Systems Engineer
- Consulting Systems Engineer
- Technical Solutions Architect
- Cisco Integrators/Partners
Prerequisites
Before taking this course, you should understand the following:
- Implement data center networking [local area network (LAN) and storage area network (SAN)]
- Describe data center storage
- Implement data center virtualization
- Implement Cisco Unified Computing System (Cisco UCS)
- Implement data center automation and orchestration with the focus on Cisco Application Centric Infrastructure (ACI) and Cisco UCS Director
- Describe products in the Cisco Data Center Nexus and Multilayer Director Switch (MDS) families
To fully benefit from this course, you should have completed the following courses or obtained the equivalent level of knowledge:
- Understanding Cisco Data Center Foundations (DCFNDU)
- Implementing and Administering Cisco Networking Technologies (CCNA)
- Implementing Cisco Data Center Core Technologies (DCCOR)
It is recommended, but not required, to have the following skills and knowledge before attending this course:
- Describe data center networking concepts
- Describe data center storage concepts
- Describe data center virtualization
- Describe Cisco UCS
- Describe data center automation and orchestration with a focus on Cisco ACI and Cisco UCS Director
- Identify products in the Cisco data center Nexus and Cisco MDS families
- Describe network fundamentals and build simple LANs, including switching and routing
Delegates will learn how to
- Describe the Layer 2 and Layer 3 forwarding options and protocols used in a data center
- Describe the rack design options, traffic patterns, and data center switching layer access, aggregation, and core
- Describe the Cisco Overlay Transport Virtualization (OTV) technology that is used to interconnect data centers
- Describe Locator/ID separation protocol
- Design a solution that uses Virtual Extensible LAN (VXLAN) for traffic forwarding
- Describe hardware redundancy options; how to virtualize the network, compute, and storage functions; and virtual networking in the data center
- Describe solutions that use fabric extenders and compare Cisco Adapter Fabric Extender (FEX) with single root input/output virtualization (SR-IOV)
- Describe security threats and solutions in the data center
- Describe advanced data center security technologies and best practices
- Describe device management and orchestration in the data center
- Describe the storage options for compute function and different Redundant Array of Independent Disks (RAID) levels from a high-availability and performance perspective
- Describe Fibre Channel concepts, topologies, architecture, and industry terms
- Describe Fibre Channel over Ethernet (FCoE)
- Describe security options in the storage network
- Describe management and automation options for storage networking infrastructure
- Describe Cisco UCS servers and use cases for various Cisco UCS platforms
- Explain the connectivity options for fabric interconnects for southbound and northbound connections
- Describe the hyperconverged solution and integrated systems
- Describe the systemwide parameters for setting up a Cisco UCS domain
- Describe role-based access control (RBAC) and integration with directory servers to control access rights on Cisco UCS Manager
- Describe the pools that may be used in service profiles or service profile templates on Cisco UCS Manager
- Describe the different policies in the service profile
- Describe the Ethernet and Fibre Channel interface policies and additional network technologies
- Describe the advantages of templates and the difference between initial and updated templates
- Describe data center automation tools
Outline
Describing High Availability on Layer 2
- Overview of Layer 2 High-Availability Mechanisms
- Virtual Port Channels
- Cisco FabricPath
- Virtual Port Channel+
Designing Layer 3 Connectivity
- First Hop Redundancy Protocols
- Improve Routing Protocol Performance and Security
- Enhance Layer 3 Scalability and Robustness
Designing Data Center Topologies
- Data Center Traffic Flows
- Cabling Challenges
- Access Layer
- Aggregation Layer
- Core Layer
- Spine-and-Leaf Topology
- Redundancy Options
Designing Data Center Interconnects with Cisco OTV
- Cisco OTV Overview
- Cisco OTV Control and Data Planes
- Failure Isolation
- Cisco OTV Features
- Optimize Cisco OTV
- Evaluate Cisco OTV
Describing Locator/ID Separation Protocol
- Locator/ID Separation Protocol
- Location Identifier Separation Protocol (LISP) Virtual Machine (VM) Mobility
- LISP Extended Subnet Mode (ESM) Multihop Mobility
- LISP VPN Virtualization
Describing VXLAN Overlay Networks
- Describe VXLAN Benefits over VLAN
- Layer 2 and Layer 3 VXLAN Overlay
- VXLAN Data Plane
Describing Hardware and Device Virtualization
- Hardware-Based High Availability
- Device Virtualization
- Cisco UCS Hardware Virtualization
- Server Virtualization
- SAN Virtualization
- N-Port ID Virtualization
Describing Cisco FEX Options
- Cisco Adapter FEX
- Access Layer with Cisco FEX
- Cisco FEX Topologies
- Virtualization-Aware Networking
- Single Root I/O Virtualization
- Cisco FEX Evaluation
Describing Basic Data Center Security
- Threat Mitigation
- Attack and Countermeasure Examples
- Secure the Management Plane
- Protect the Control Plane
- RBAC and Authentication, Authorization, and Accounting (AAA)
Describing Advanced Data Center Security
- Cisco TrustSec in Cisco Secure Enclaves Architecture
- Cisco TrustSec Operation
- Firewalling
- Positioning the Firewall Within Data Center Networks
- Cisco Firepower® Portfolio
- Firewall Virtualization
- Design for Threat Mitigation
Describing Management and Orchestration
- Network and License Management
- Cisco UCS Manager
- Cisco UCS Director
- Cisco Intersight
- Cisco DCNM Overview
Describing Storage and RAID Options
- Position DAS in Storage Technologies
- Network-Attached Storage
- Fibre Channel, FCoE, and Internet Small Computer System Interface (iSCSI)
- Evaluate Storage Technologies
Describing Fibre Channel Concepts
- Fibre Channel Connections, Layers, and Addresses
- Fibre Channel Communication
- Virtualization in Fibre Channel SAN
Describing Fibre Channel Topologies
- SAN Parameterization
- SAN Design Options
- Choosing a Fibre Channel Design Solution
Describing FCoE
- FCoE Protocol Characteristics
- FCoE Communication
- Data Center Bridging
- FCoE Initialization Protocol
- FCoE Design Options
Describing Storage Security
- Common SAN Security Features
- Zones
- SAN Security Enhancements
- Cryptography in SAN
Describing SAN Management and Orchestration
- Cisco DCNM for SAN
- Cisco DCNM Analytics and Streaming Telemetry
- Cisco UCS Director in the SAN
- Cisco UCS Director Workflows
Describing Cisco UCS Servers and Use Cases
- Cisco UCS C-Series Servers
- Fabric Interconnects and Blade Chassis
- Cisco UCS B-Series Server Adapter Cards
- Stateless Computing
- Cisco UCS Mini
Describing Fabric Interconnect Connectivity
- Use of Fabric Interconnect Interfaces
- VLANs and VSANs in a Cisco UCS Domain
- Southbound Connections
- Northbound Connections
- Disjoint Layer 2 Networks
- Fabric Interconnect High Availability and Redundancy
Describing Hyperconverged and Integrated Systems
- Hyperconverged and Integrated Systems Overview
- Cisco HyperFlex™ Solution
- Cisco HyperFlex Scalability and Robustness
- Cisco HyperFlex Clusters
- Cluster Capacity and Multiple Clusters on One Cisco UCS Domain
- External Storage and Graphical Processing Units on Cisco HyperFlex
- Cisco HyperFlex Positioning
Describing Cisco UCS Manager Systemwide Parameters
- Cisco UCS Setup and Management
- Cisco UCS Traffic Management
Describing Cisco UCS RBAC
- Roles and Privileges
- Organizations in Cisco UCS Manager
- Locales and Effective Rights
- Authentication, Authorization, and Accounting
- Two-Factor Authentication
Describing Pools for Service Profiles
- Global and Local Pools
- Universally Unique Identifier (UUID) Suffix and Media Access Control (MAC) Address Pools
- World Wide Name (WWN) Pools
- Server and iSCSI Initiator IP Pools
Describing Policies for Service Profiles
- Global vs. Local Policies
- Storage and Basic Input/Output System (BIOS) Policies
- Boot and Scrub Policies
- Intelligent Platform Management Interface (IPMI) and Maintenance Policies
Describing Network-Specific Adapters and Policies
- LAN Connectivity Controls
- SAN Connectivity Controls
- Virtual Access Layer
- Connectivity Enhancements
Describing Templates in Cisco UCS Manager
- Cisco UCS Templates
- Service Profile Templates
- Network Templates
- Designing Data Center Automation
Model-Driven Programmability
- Cisco NX-API Overview
- Programmability Using Python
- Cisco Ansible Module
- Use the Puppet Agent
Lab Outline
- Design Virtual Port Channels
- Design First Hop Redundancy Protocol (FHRP)
- Design Routing Protocols
- Design Data Center Topology for a Customer
- Design Data Center Interconnect Using Cisco OTV
- Design Your VXLAN Network
- Create a Cisco FEX Design
- Design Management and Orchestration in a Cisco UCS Solution
- Design a Fibre Channel Network
- Design and Integrate an FCoE Solution
- Design a Secure SAN
- Design Cisco UCS Director for Storage Networking
- Design a Cisco UCS Domain and Fabric Interconnect Cabling
- Design a Cisco UCS C-Series Server Implementation
- Design Cisco UCS Fabric Interconnect Network and Storage Connectivity
- Design Systemwide Parameters in a Cisco UCS Solution
- Design an LDAP Integration with a Cisco UCS Domain
- Design Pools for Service Profiles in a Cisco UCS Solution
- Design Network-Specific Adapters and Policies in a Cisco UCS Solution
Frequently asked questions
How can I create an account on myQA.com?
There are a number of ways to create an account. If you are a self-funder, simply select the "Create account" option on the login page.
If you have been booked onto a course by your company, you will receive a confirmation email. From this email, select "Sign into myQA" and you will be taken to the "Create account" page. Complete all of the details and select "Create account".
If you have the booking number you can also go here and select the "I have a booking number" option. Enter the booking reference and your surname. If the details match, you will be taken to the "Create account" page from where you can enter your details and confirm your account.
Find more answers to frequently asked questions in our FAQs: Bookings & Cancellations page.
How do QA’s virtual classroom courses work?
Our virtual classroom courses allow you to access award-winning classroom training, without leaving your home or office. Our learning professionals are specially trained on how to interact with remote attendees and our remote labs ensure all participants can take part in hands-on exercises wherever they are.
We use the WebEx video conferencing platform by Cisco. Before you book, check that you meet the WebEx system requirements and run a test meeting (more details in the link below) to ensure the software is compatible with your firewall settings. If it doesn’t work, try adjusting your settings or contact your IT department about permitting the website.
How do QA’s online courses work?
QA online courses, also commonly known as distance learning courses or elearning courses, take the form of interactive software designed for individual learning, but you will also have access to full support from our subject-matter experts for the duration of your course. When you book a QA online learning course you will receive immediate access to it through our e-learning platform and you can start to learn straight away, from any compatible device. Access to the online learning platform is valid for one year from the booking date.
All courses are built around case studies and presented in an engaging format, which includes storytelling elements, video, audio and humour. Every case study is supported by sample documents and a collection of Knowledge Nuggets that provide more in-depth detail on the wider processes.
When will I receive my joining instructions?
Joining instructions for QA courses are sent two weeks prior to the course start date, or immediately if the booking is confirmed within this timeframe. For course bookings made via QA but delivered by a third-party supplier, joining instructions are sent to attendees prior to the training course, but timescales vary depending on each supplier’s terms. Read more FAQs.
When will I receive my certificate?
Certificates of Achievement are issued at the end the course, either as a hard copy or via email. Read more here.