About this course

Course code TPPMLR41
Duration 2 Days

This course covers predictive modeling using SAS/STAT software with emphasis on the LOGISTIC procedure. This course also discusses selecting variables and interactions, recoding categorical variables based on the smooth weight of evidence, assessing models, treating missing values and using efficiency techniques for massive data sets.

Prerequisites

Before attending this course, you should

  • have experience executing SAS programs and creating SAS data sets, which you can gain from the SAS Programming 2: Data Manipulation Techniques course
  • have experience building statistical models using SAS software
  • have completed a statistics course that covers linear regression and logistic regression, such as the Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression course.
  • This course addresses SAS/STAT software.

Who should attend

Modelers, analysts and statisticians who need to build predictive models, particularly models from the banking, financial services, direct marketing, insurance and telecommunications industries

Delegates will learn how to

  • use logistic regression to model an individual's behavior as a function of known inputs
  • create effect plots and odds ratio plots using ODS Statistical Graphics
  • handle missing data values
  • tackle multicollinearity in your predictors
  • assess model performance and compare models.

Outline

Predictive Modeling

  • business applications
  • analytical challenges

Fitting the Model

  • parameter estimation
  • adjustments for oversampling

Preparing the Input Variables

  • missing values
  • categorical inputs
  • variable clustering
  • variable screening
  • subset selection

Classifier Performance

  • ROC curves and Lift charts
  • optimal cutoffs
  • K-S statistic
  • c statistic
  • profit
  • evaluating a series of models

2 Days

Duration

This is a QA approved partner course

Delivery Method

Delivery method

Classroom

Face-to-face learning in the comfort of our quality nationwide centres, with free refreshments and Wi-Fi.

Find dates and prices

Online booking is currently not available for this course, to find out more please call us on 0345 074 7998 or email us at info@qa.com to discuss how we can help.

Trusted, awarded and accredited

Fully accredited to ensure we provide the highest possible standards in learning

All third party trademark rights acknowledged.