About this course

Course code TPPMLR93
Duration 2 Days

This course covers predictive modelling using SAS/STAT software with emphasis on the LOGISTIC procedure. This course also discusses selecting variables, assessing models, treating missing values and using efficiency techniques for massive data sets.


Before attending this course, you should

  • have experience executing SAS programs and creating SAS data sets, which you can gain from the SAS Programming 1: Essentials course
  • have experience building statistical models using SAS software
  • have completed a statistics course that covers linear regression and logistic regression, such as the Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression course.

Who should attend

  • Modellers, analysts and statisticians who need to build predictive models, particularly models from the banking, financial services, direct marketing, insurance and telecommunications industries

Delegates will learn how to

Learn how to

  • use logistic regression to model an individual's behaviour as a function of known inputs
  • create effect plots and odds ratio plots using ODS Statistical Graphics
  • handle missing data values
  • tackle multicollinearity in your predictors
  • assess model performance and compare models.


Predictive Modelling

  • business applications
  • analytical challenges

Fitting the Model

  • parameter estimation
  • adjustments for oversampling

Preparing the Input Variables

  • missing values
  • categorical inputs
  • variable clustering
  • variable screening
  • subset selection

Classifier Performance

  • ROC curves and Lift charts
  • optimal cut-offs
  • K-S statistic
  • c statistic
  • profit
  • evaluating a series of models

This course addresses

  • SAS/STAT software

2 Days


This is a QA approved partner course

Delivery Method

Delivery method


Face-to-face learning in the comfort of our quality nationwide centres, with free refreshments and Wi-Fi.

Find dates and prices

Online booking is currently not available for this course, to find out more please call us on 0113 220 7150 or email us at info@qa.com to discuss how we can help.

The world's leading organisations trust QA with their learning and development.

Find out why

Trusted, awarded and accredited

Fully accredited to ensure we provide the highest possible standards in learning

All third party trademark rights acknowledged.