Overview
These courses are being delivered by an IBM Global Training Provider
This course presents advanced models to predict categorical and continuous targets. Before reviewing the models, data preparation issues are addressed such as partitioning, detecting anomalies, and balancing data. The participant is first introduced to a technique named PCA/Factor, to reduce the number of fields to a number of core fields, referred to as components or factors. The next units focus on supervised models, including Decision List, Support Vector Machines, Random Trees, and XGBoost. Methods are reviewed to combine supervised models and execute them in a single run, both for categorical and continuous targets.
Prerequisites
• Familiarity with the IBM SPSS Modeler environment (creating, editing, opening, and saving streams).
• Familiarity with basic modeling techniques, either through completion of the courses Predictive Modeling for Categorical Targets Using IBM SPSS Modeler and/or Predictive Modeling for Continuous Targets Using IBM SPSS Modeler, or by experience with predictive models in IBM SPSS Modeler.
Delegates will learn how to
- Preparing data for modeling
- Reducing data with PCA/Factor
- Creating rulesets for flag targets with Decision List
- Exploring advanced supervised models
- Combining models
- Finding the best supervised model
Outline
1. Preparing data for modeling
• Address general data quality issues
• Handle anomalies
• Select important predictors
• Partition the data to better evaluate models
• Balance the data to build better models
2. Reducing data with PCA/Factor
• Explain the idea behind PCA/Factor
• Determine the number of components/factors
• Explain the principle of rotating a solution
3. Creating rulesets for flag targets with Decision List
• Explain how Decision List builds a ruleset
• Use Decision List interactively
• Create rulesets directly with Decision List
4. Exploring advanced supervised models
• Explain the principles of Support Vector Machine (SVM)
• Explain the principles of Random Trees
• Explain the principles of XGBoost
5. Combining models
• Use the Ensemble node to combine model predictions
• Improve model performance by meta-level modeling
6. Finding the best supervised model
• Use the Auto Classifier node to find the best model for categorical targets
• Use the Auto Numeric node to find the best model for continuous targets
Frequently asked questions
See all of our FAQsHow can I create an account on myQA.com?
There are a number of ways to create an account. If you are a self-funder, simply select the "Create account" option on the login page.
If you have been booked onto a course by your company, you will receive a confirmation email. From this email, select "Sign into myQA" and you will be taken to the "Create account" page. Complete all of the details and select "Create account".
If you have the booking number you can also go here and select the "I have a booking number" option. Enter the booking reference and your surname. If the details match, you will be taken to the "Create account" page from where you can enter your details and confirm your account.
Find more answers to frequently asked questions in our FAQs: Bookings & Cancellations page.
How do QA’s virtual classroom courses work?
Our virtual classroom courses allow you to access award-winning classroom training, without leaving your home or office. Our learning professionals are specially trained on how to interact with remote attendees and our remote labs ensure all participants can take part in hands-on exercises wherever they are.
We use the WebEx video conferencing platform by Cisco. Before you book, check that you meet the WebEx system requirements and run a test meeting (more details in the link below) to ensure the software is compatible with your firewall settings. If it doesn’t work, try adjusting your settings or contact your IT department about permitting the website.
Learn more about our Virtual Classrooms.
How do QA’s online courses work?
QA online courses, also commonly known as distance learning courses or elearning courses, take the form of interactive software designed for individual learning, but you will also have access to full support from our subject-matter experts for the duration of your course. When you book a QA online learning course you will receive immediate access to it through our e-learning platform and you can start to learn straight away, from any compatible device. Access to the online learning platform is valid for one year from the booking date.
All courses are built around case studies and presented in an engaging format, which includes storytelling elements, video, audio and humour. Every case study is supported by sample documents and a collection of Knowledge Nuggets that provide more in-depth detail on the wider processes.
Learn more about QA’s online courses.
When will I receive my joining instructions?
Joining instructions for QA courses are sent two weeks prior to the course start date, or immediately if the booking is confirmed within this timeframe. For course bookings made via QA but delivered by a third-party supplier, joining instructions are sent to attendees prior to the training course, but timescales vary depending on each supplier’s terms. Read more FAQs.
When will I receive my certificate?
Certificates of Achievement are issued at the end the course, either as a hard copy or via email. Read more here.